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The inviscid and viscous stability problems are addressed for a boundary layer which 
can support both Gortler and crossflow vortices. The change in structure of Gortler 
vortices is found when the parameter representing the degree of three-dimensionality 
of the basic boundary-layer flow under consideration is increased. It is shown that 
crossflow vortices emerge naturally as this parameter is increased and ultimately 
become the only possible vortex instability of the flow. It is shown conclusively that 
at  sufficiently large values of the crossflow there are no unstable Gortler vortices 
present in a boundary layer which, in the zero-crossflow case, is centrifugally 
unstable. The results suggest that in many practical applications Gortler vortices 
cannot be a cause of transition because they are destroyed by the three-dimensional 
nature of the basic state. In swept-wing flows the GBrtler mechanism is probably not 
present for typical angles of sweep of about 20". 

Some discussion of the receptivity problem for vortex instabilities in weakly 
three-dimensional boundary layers is given; it is shown that inviscid modes have 
a coupling coefficient marginally smaller than those of the fastest growing viscous 
modes discussed recently by Denier, Hall & Seddougui (1991). However, the fact that 
the growth rates of the inviscid modes are the larger in most situations means that 
they are probably the more likely source of transition. 

1. Introduction 
Recently there has been interest in the effect of boundary-layer growth on 

instability mechanisms to which the boundary layers are susceptible. Here, we shall 
concentrate on the Gortler vortex mechanism which has been shown to occur in both 
two- and three-dimensional boundary-layer flows over concave walls. Much of the 
early theoretical work concerned with Gortler vortices addressed the problem of the 
linear stability of external two-dimensional flows over such concave walls. Early 
contributions were made by, among others, Gortler (1940), Smith (1955) and 
Hammerlin (1956). Later Hall (1982a, b )  argued that much of this early work was 
fundamentally flawed, for all the analyses invoked the parallel flow approximation 
(which essentially assumes that the basic flow in which the vortices lie is independent 
of the streamwise coordinate and so neglects the effect of boundary layer growth). 
This approximation enables the linear stability equations to be expressed as ordinary 
differential equations but Hall illustrated that this assumption is unjustifiable 
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except in the limit of small vortex wavelength, and indeed this is the explanation for 
the considerable inconsistencies in the results of the previous studies. Additionally, 
in the case of small vortex wavelength the Gortler instability may be described by 
an asymptotic structure which takes account of boundary-layer growth in a rational 
manner and thence the parallel flow assumption is rendered superfluous in the only 
situation in which it has any relevance whatsoever. 

Hall (1982 a )  examined boundary-layer flow over the cylinder y = 0,  - 00 < z < co 
where the z-axis is a generator of the cylinder and y measures the distance normal to 
the surface. The x-coordinate measures distance along the curved surface, which is 
taken to have variable curvature 

l / b  x(xlI), ( l . l a )  

where b is a typical radius of curvature of the surface and I is a characteristic 
lengthscale in the streamwise direction. The Reynolds number Re, the curvature 
parameter 6 and the Gortler number G are defined by 

Re = Uo l / v  , 6 = l / b ,  G = 2Rei6, ( l . l b )  

where Uo is a typical flow velocity in the x-direction and v is the kinematic viscosity 
of the fluid. Hall (1982a) investigated the flow characteristics when Re is large and 
6 is small such that, in the limit 6+ 0, G is held fixed at an O( 1) value. By scaling the 
spanwise coordinate z on the boundary-layer thickness, it  was demonstrated that for 
a non-dimensional vortex wavenumber e-l % 1 linearized vortex modes within a two- 
dimensional basic flow are neutrally stable a t  a Gortler number G = go eP4 + . . . , where 
go is a known O( 1) constant whose precise value is dependent upon the properties of 
the basic flow under consideration. For larger wavelengths the problem is fully non- 
parallel and the linear stability equations, which now take the form ofa  set of partial 
differential equations, have to be solved numerically, see Hall (1983). This paper 
showed two significant features of this non-parallel flow problem, namely that the 
ideas of a unique stability curve and of unique growth rates a t  a specified 
downstream location are inapplicable to the Gortler problem because the location 
where a vortex commences to grow is dependent upon the position and the shape of 
the imposed disturbance. 

Questions concerning the development of nonlinear non-parallel vortices within 
growing boundary layers were addressed by Hall (1988). This numerical investigation 
showed that as the nonlinear disturbance evolves the perturbation energy becomes 
concentrated in the fundamental and mean flow correction ; a conclusion consistent 
with the weakly nonlinear theory of Hall (19823) valid for small-wavelength vortices. 
It is well known that Gortler vortices set up in an experiment conserve their 
wavelength as they move downstream. Since the boundary layer itself thickens it 
follows that the local non-dimensional vortex wavenumber becomes large as the 
vortex develops. Thus the small-wavelength limit in the external Gortler problem is 
appropriate to the ultimate development of any fixed-wavelength vortex and hence 
sufficiently far downstream in many flows the asymptotic work of Hall (1982a, b )  
becomes applicable. 

As with all weakly nonlinear investigations, the results of Hall (1982b) are valid 
only within a neighbourhood of the point where the imposed perturbation is 
neutrally stable. For vortices of wavenumber 6-l $- 1, their development downstream 
of the point of neutral stability is governed by the solution of a pair of coupled 
nonlinear partial differential equations which adopt a simple asymptotic structure a t  
large values ofX, where Ex (X = O( 1)) denotes the distance of the vortex downstream 
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of the neutral point. Formally, for large X, Hall & Lakin (1988) showed that this 
asymptotic structure could be used to deduce the flow configuration for fully 
nonlinear Gortler vortices, at  which point the mean flow correction generated by the 
presence of the vortices is as large as the basic (undisturbed) flow itself. The vortex 
structure derived by Hall & Lakin (1988) essentially consists of a core region in which 
the vortex is concentrated and which is bounded by two thin layers in which the 
vortex activity is reduced to zero exponentially. Further work by Hall & Seddougui 
(1989), subsequently reconsidered by Bassom & Seddougui (1990), has shown that 
these thin layers are susceptible to secondary instabilities which take the form of 
travelling waves confined within these layers. This theoretical investigation, together 
with the weakly nonlinear account of this form of secondary instability described by 
Seddougui & Bassom (1991), provides good qualitative agreement with several 
experimental observations, notably those of Peerhossaini & Wesfreid (1988a, b) .  

All the work described above has addressed problems which arise when Gortler 
vortices occur in two-dimensional boundary layers but in many practical situations 
in which Gortler vortices are known to arise the basic boundary layer is three- 
dimensional. For example, in the case of a boundary-layer flow over a three- 
dimensional obstacle or the flow over a turbine blade the three-dimensionality of the 
basic flow is potentially crucial and should not be neglected. Most significantly, the 
development of laminar-flow airfoils has given rise to designs which have two areas 
of concave curvature on the lower side of the airfoil and when the wing is swept the 
boundary layer flow is fully three-dimensional and the previously mentioned 
analyses are largely inapplicable. 

The first attempt to describe this three-dimensionality effect was made by Hall 
(1985) who examined the Gortler mechanism in flow over an infinitely long swept 
cylinder. The results obtained were quite general and did not require a precise 
description of the particular boundary layer under investigation. Hall (1985) showed 
that it is the relative size of the crossflow and chordwise flow over the cylinder which 
is critical in determining the vortex structure. He demonstrated that as this ratio, 
say A, was increased from zero the first significant change in the vortex structure 
from that in the two-dimensional case occurs when A -Red,  where Re is the (large) 
Reynolds number defined in (1.1).  Then the vortices become time dependent and, 
unlike the two-dimensional case, the high-wavenumber modes no longer have vortex 
boundaries aligned with the flow direction. Indeed, as the crossflow increases further, 
the neutral vortices have axes perpendicular to the vortex lines of the basic flow. The 
neutral Gortler number for the vortices was predicted by a large-wavenumber 
asymptotic analysis, the results of which suggested that for O( 1) values of the ratio 
of the crossflow and chordwise velocity fields the Gortler mechanism is probably 
unimportant compared with Tollmien-Schlichting and crossflow type instabilities. 

An investigation into the effect of crossflow on weakly nonlinear Gortler vortices 
was made by Bassom (1989). Rather than concentrate on vortices within a growing 
boundary layer with the inherent difficulties of providing an adequate description of 
boundary layer growth, that work considered vortices within a curved channel. This 
has the advantage that the problem can be described by solution of ordinary 
differential equations as opposed to partial differential equations. Bassom (1989) 
showed that for this problem equilibrium, streamwise-independent weakly nonlinear 
vortices could only persist below a certain threshold value of the crossflow. 

One objective of the present paper is to extend some recent work by Denier, Hall 
& Seddougui (1991) (hereinafter referred to as DHS) into a three-dimensional setting. 
The principal aim of DHS was to investigate the problem of providing a rational 
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theory for the receptivity of Gortler vortices and specifically how the vortices may 
be triggered by wall roughness elements. In the course of this work, DHS 
reconsidered the stability of a vortex in a high-Gortler-number flow by implementing 
a linear, spatial stability analysis. In particular, for G % 1 ,  they considered the 
structure of vortices in two different wavenumber regimes: they reworked the 
analysis of Hall ( 1 9 8 2 ~ )  for high O(Ga) wavenumbers and also examined O(1)- 
wavenumber vortices. This latter disturbance mode is governed by inviscid 
equations. By considering the region between these two wavenumber regimes, DHS 
identified a new structure which is relevant for vortices of wavenumber O(G$ and 
which has the property that the vortices are trapped in a thin layer of thickness 
O(G-i) at the wall. This is in contrast to the structure identified previously by Hall 
( 1 9 8 2 ~ )  who demonstrated that vortices of wavenumber O(G$ are confined to a thin 
layer embedded within the boundary layer a t  some well-defined position. 

Of paramount importance, DHS showed that within the O(Gi) wavenumber regime 
there exists a unique most unstable Gortler vortex according to linear stability 
theory. Hence the most dangerous mode within a two-dimensional boundary layer 
has been found and our objective now is to extend the work of DHS to consider the 
effect of introducing crossflow into the boundary-layer flow. 

As previously mentioned, DHS conducted a purely spatial analysis of the 
instability modes. Here, we first add a crossflow into the situation considered by 
DHS and assess its effect; we continue to use the spatial approach. For the O(1)- 
wavenumber modes a t  G D 1 we show that crossflow first has a significant effect on 
the two-dimensional results once this parameter becomes O(Re-kG:). By examining 
the properties of the vortices when subject to this size of crossflow we can identify 
several limits of note. We show that as the crossflow increases the vortex structure 
takes on an identity which is essentially that of a crossflow instability, a mechanism 
first investigated by Gregory, Stuart & Walker (1955). Additionally, if both the 
crossflow and the wavenumber of this inviscid vortex increase appropriately we can 
obtain a mode whose structure is dominated by viscous effects. It is found that when 
this occurs the ratio of crossflow to chordwise flow becomes O(Re-iGg) and the (large) 
wavenumber of the vortices is that considered by DHS and which pertains to the 
most unstable Gortler vortex in a two-dimensional flow. Consequently, we have the 
basis for explaining how the stability characteristics of the modes found by DHS are 
changed by the presence of crossflow. We demonstrate that the introduction of 
crossflow into the problem can have a stabilizing effect, a t  least according to our 
linear theory. In  particular, whereas in DHS it was shown that stationary vortices 
are necessarily unstable at O(G%) wavenumbers, this is no longer true once crossflow 
terms are introduced. In  addition, for certain crossflow values there exist neutrally 
stable vortex modes whilst at large enough values of the crossflow no vortex 
instabilities induced by centrifugal effects persist. 

We then develop our description of the disturbance motion by allowing the 
vortices to be time dependent. Unfortunately, as in DHS, for all the problems treated 
here the equations which determine the vortices form a pair of coupled ordinary 
differential equations with associated boundary conditions and this system is only 
amenable to a numerical solution for O( 1 )  parameter values. We study this numerical 
problem for a number of particular parameter choices and also investigate the 
asymptotic description of the vortex structure in both the limits of large and of small 
vortex wavelengths. 

The procedure for the remainder of the paper is as follows. In the coming section 
we formulate the problem at hand and obtain the differential equations which 
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determine the (essentially inviscid) structure for vortices of O( 1) wavenumber. After 
considering the solutions to this problem, we move on in $3 to examine the viscous 
structure which describes the large-wavenumber O( Gt) vortices in the presence of 
crossflow. At this stage we include both the crossflow and temporal terms described 
in the preceding paragraphs and then subsequently we study particular cases. In  $ 4  
we briefly consider the zero-frequency crossflow problem and in the following section 
examine the effect of allowing the disturbance to have periodic temporal dependence. 
We then proceed to investigate various asymptotic limits which describe the 
behaviour of the vortex modes in both low- and high-wavenumber limits and 
conclude with some discussion. 

2. Formulation 
Our aim here is to obtain the equations which determine the structure of high- 

wavenumber vortices in a slightly three-dimensional boundary layer. As in Hall 
(1985), we consider a boundary layer flowing over the cylinder y = 0, - m < z < m 
so that the z-axis is a generator of the cylinder, y measures the distance normal to 
the surface and the x-coordinate measures distance along the curved surface. We 
define the Reynolds number Re, the Gortler number G and the curvature parameter 
S as in (1.1) where U, is a typical flow velocity in the streamwise direction. The 
Reynolds number is assumed to be large, whilst S is sufficiently small so that as 6- t  
0 the parameter G is fixed and is order one. Again following Hall (1985), the basic 
three-dimensional boundary layer is taken to be of the form 

u = Uo[a(X,  Y ) ,Re-h(X ,  Y ) ,  Re-ih*m(X, Y ) ]  (1 +O(Re-i)), (2.1 a) 

where X = 211, Y = ( y / l )  Re-$, (2.1 b) 

and A* is supposed to be O( 1). To compute this boundary-layer profile in practice, Q 

and B are determined by numerically integrating the two-dimensional boundary- 
layer equations and the crossflow is then found from the spanwise momentum 
equation. 

We now define the variable 2 = Re;zz/l and perturb the basic flow. If t is a time 
variable scaled on ZIU, and if E = exp (ia2) then we disturb (2.1 a )  by writing 

u = UO[a+6tU(t ,X,  y ) E , ~ R e - t + S + R e - f v ( t , X ,  Y ) E ,  

h*Re-b++tRe-tW(t ,X,  Y ) E ]  ( l + O ( R e d ) ) ,  ( 2 . 2 ~ )  

where St 4 1. Similarly, we perturb the basic pressure fi by writing 

p = p+StRe-’P(t,X, Y ) E .  ( 2 . 2 6 )  

Substituting the expressions (2.2) into the governing continuity and NavierStokes 
equations and linearizing yields the perturbation equations 

Ux+Vy+iaW = 0, ( 2 . 3 ~ )  

U , + ~ U , + U Q ~ + B U , + V ~ , + A * ~ ~ ~ U  = U,,-a2U, (2.3b) 

V,+CV, + UBx +W,+ VB,+h*zSaV+GX(X) aU = -Py + VYy-a2V, ( 2 . 3 ~ )  

W, + EW, + h*UiBx + BWy + A* Vm, + h*mia W = - iaP + W,, - a2 W .  (2.3 d ) 

The scalings (2.2) are those appropriate to Gortler vortices (see Hall 1982a for 
further discussion). We note the key features that the streamwise velocity 
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disturbance is asymptotically larger than the other components and that with these 
scalings the pressure term drops out of the streamwise momentum equation (2 .3b ) .  
Further, viscous effects are brought into the perturbation equations (2 .3)  by the 
choice of spanwise and normal scalings. 

At this stage we consider the spatial inviscid Gortler modes of O( 1) wavenumber ; 
in the context of the viscous equations (2 .3 )  this corresponds to taking the limit 
G % 1. D H S  showed that for A* = 0, a = O(1) the vortex structure is found by 
considering expansions of the forms 

U = {u,(X, Y )  + G-bl(X, Y )  + . . .} exp Gz /3dX , (2 .4)  ('5 ) 
together with similar expansions for G-tV, G-iW and G-lP. Substitution of (2 .4 )  in 
(2 .3 )  yields the problem for the amplification rate p 

( 2 . 5 ~ )  

with associated boundary conditions 

vo = O  at Y = O ,  v,+O as Y-tco .  (2 .5b )  

DHS observed that the most unstable spatial mode which is a solution of (2 .5 )  may 

vo = aexp ( -aY) ,  p2 = ( 2 . 5 ~ )  

which is valid for all a. Thus we have the somewhat remarkable result that, so long 
as vanishes a t  the wall, the fastest growing inviscid mode has growth rate 
independent of the basic state. 

We are concerned with inclusion of sufficient crossflow in the problem so that the 
governin4 equations (2.5) are altered by this effect. We find that this occurs when 
A* = O(Gz) and then we write 

be written in the form 

(U,V,W,P)  = {U,(Y)+ ..., GiV,(Y)+ ..., GiW,(Y)+ ..., GP,(Y)+ ...} exp 

( 2 . 6 ~ )  

(2 .6b )  

At this stage we concentrate on a purely spatial approach so that on substituting 
(2 .6 )  into (2 .3 )  we obtain, in turn, 

(PU, + ia W,) + dV,/dY = 0, ( 2 . 7 ~ )  

(pa+ ixam) U, + aY V, = 0, (2 .7b )  

(pa+ixam) V,+xaU, = -dP,/dY, ( 2 . 7 ~ )  

(/3a+iXua) W,+ZB~ V, = - i d o .  ( 2 . 7 d )  

From (2 .7 )  we can easily show that 

( -  i@+Xam)2 (d2&/dP -a2&) - ( - ipa+xam) ( - i@,, V, = a2~a@, V,. 
( 2 . 8 ~ )  

The above equation then controls the inviscid growth of vortices in a weakly three- 
dimensional boundary layer ; it is of course the appropriate generalization due to wall 
curvature of the well-known Rayleigh equation for unidirectional flows. 
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FIGURE 1. The basic velocity profiles ti, defined in (2.9). 

Equation ( 2 . 8 ~ )  needs to be solved subject to suitable boundary conditions. First, 
we demand the typical inviscid condition at  the surface of the cylinder y = 0 so that 

V , = O  at Y = O .  (2.8b) 

In addition, to ensure that the disturbance is confined within the boundary layer, 

V , + O  as Y+m. ( 2 . 8 ~ )  

These boundary conditions, when added to (2.8 a ) ,  constitute an eigenproblem for 
the spatial growth rate /3 in terms of the scaled wavenumber a and the scaled 
crossflow x. We notice that since this problem is a localized one about some point 
x = x* we may scale the curvature parameter x out of the problem by appropriately 
redefining p and x. Consequently, for the remainder of the work described here we 
shall take x = 1 .  

To fix our ideas upon some definite boundary-layer flow we chose to consider (2.8) 
when is given by the Falkner-Skan profile 

a = f ’ ( Y ) :  j ” ’ + f l ’ ’ + ~ ( l - ( f ’ ) z )  = 0, f(0) =f’ (O)  = 0, f’(m) = 1 .  ( 2 . 9 ~ )  

This flow is closely related to the steady flow in the boundary layer along a surface 
of revolution near a forward stagnation point, see Jones & Watson (1963). Cooke 
(1950) showed that, for a flow over an infinite yawed wedge a t  zero angle of attack, 
if the streamwise basic flow is given by ( 2 . 9 ~ )  then the spanwise component tIJ 
satisfies 

tIJ = g :  g”+fg’ = 0, g(0) = 0, g ( m )  = 1 .  (2.9b) 

The dependences of a and tij on Y are depicted in figure 1 .  We observe that the Blasius 
profile would not be a suitable choice for a and tij for then we retrieve the scenario 
described in Hall (1985). Hall showed that in flows with zero pressure gradient and 
with and tij therefore linearly related the whole problem of Gortler vortices in three- 
dimensional boundary layers becomes degenerate and can be reduced to a two- 
dimensional case. Consequently, we needed to focus our attention on other physically 
realistic three-dimensional flows and the choice (2.9) was motivated by these 
requirements. 

Given this basic flow we then solved (2.8) for a variety of parameter regimes. We 
first considered the effect of increasing the crossflow on the vortex growth rate /3* 
(p, denotes the real part of the complex number p). The results are illustrated in 
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FIGURE 2. Real parts of the amplific2tion parameter j3 defined by ( 2 . 6 ~ )  for various values of 

scaled crossflow A:  (a) = 4.5, 4.75 and 5 .  
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FIGURE 3. Real parts of the amplification parameter j3 for larger crossflows, 
h = 5, 10, 15, 20 and 25. 

figure 2 for a selection of X-values and we can make some immediate deductions. 
When x = 0 we of course return to the case of DHS and p is given by ( 2 . 5 ~ ) .  However, 
as x is increased then for most prescribed wavenumbers a the corresponding growth 
rate decreases so that the effect of increasing the crossflow is to stabilize the vortex 
flow. 

For small crossflows x (less than some cut-off value, say x, x 4.7) we observe that 
although the vortex is more stable than in the two-dimensional base flow case, we 
still have /?, > 0 so that the vortex remains unstable for all a. Once X reaches the 
critical value x, however, figure 2 indicates that there exists a r s i o n  of wavenumber 
space in which vortices can no longer persist; indeed, for x > A, there exist cut-off 
values al(X) and a2(X) such that the vortices only exist for a < a, or a > a2. As x 
increases yet further, we see that a, decreases and a2 increases and in addition the 
growth rates p, in the lower wavenumber regime grow. In  figure 3 we have illustrated 
the dependence of p, upon ?i for those values of a less than a,(X). We can infer from 
this figure that as x - t  co the value al(X) converges to some non-zero value, say aim, 
and this behaviour is explained in the asymptotic work elucidated shortly. 

Figure 4 shows the behaviour of the imaginary part of p, pi, as the wavenumber 
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EIQURE4. Imaginary parts of the amplification parametgr for various values of scaled crossflow 
A :  (a )  h = 0, 1, 2, 3 and 4 ;  ( b )  h = 4.5, 4.75 and 5 ;  (c) h = 5, 10, 15, 20 and 25. On (c) for each 
crossflow the cross indicates the classical value of 8, such that (2.12) is satisfied and so neutrally 
stable solutions of the Gregory et al. (1955) crossflow instability problem arise. 

a and the crossflow 1 vary. We immediately deduce from figure 4(a) that, for 0 < 
h < xc, pi is negative for all a and becomes increasingly more negative as a+ 00. In 
addition, we know from the solution ( 2 . 5 ~ )  that pi = 0 for all a when we consider a 
purely two-dimensional flow (x = 0). For values of x > xc, see figure 4(b), we find, as 
previously mentioned, that the unstable vortex cannot persist in some wavenumber 
range which increases in extent as 1 grows. In figure 4 (b) this feature is indicated by 
the gap in the possible values of pi for x > 1,. As x is increased yet further, see figure 
4 ( c ) ,  pi becomes progressively more negative for any prescribed wavenumber a and 
here we have plotted the dependence pi(a) for a < a,(X). 

We turn now to consider various asymptotic solutions of (2 .8) .  First, we study the 
case x % 1, a < a,; i.e. the left-hand solution branches in figures 2 ( b ) ,  4(b) and those 
branches sketched in figures 3, 4(c). If we write 

p = b X + O ( X ) ,  ( 2 . 1 0 ~ )  

- 

and substitute this expansion into ( 2 . 8 ~ )  we obtain at  leading order 

(-i~~+a~)(d2&/dF-a2&)-(-i~$’+aw”) V, = 0. (2.10b) 

Since curvature effects are now negligible at  zeroth order this is a standard Rayleigh 
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equation and we now have a connection between our three-dimensional vortex flow 
and the work of Gregory et al. (1955) who were concerned with a description of 
stationary crossflow vortices formed in the boundary layer above a rotating disc. 
This instability is due to the inflexional character of the basic velocity profile and 
Gregory et al. (1955) showed with china-clay techniques that the crossflow instability 
took the form of a regularly spaced pattern of spiral vortices which was stationary 
relative to the disc. Stuart (in Gregory et al. 1955), using inviscid theory, suggested 
that the instability could be associated with a particular inflexional profile in which 
the inflexion point coincided with a point of zero velocity somewhere in the flow. His 
calculation gave the predicted number of vortices to be approximately four times the 
observed value of about 30, but the angle of 13" between the axes of the vortices and 
the radius vector was in excellent agreement with their experiments. 

We can appeal to Stuart's inviscid analysis and note that there is a solution of 
(2.10b) with boundary conditions (2.8b, c) for which a is real and /3 purely imaginary 
if there exists a point 7 =)= 0 a t  which 

(-i)a(P)+ata(P)) = (-iac(.(P)+atajf(P)) = 0. (2.11) 

Some numerical work shows that for the basic profiles (2.9) a suitable solution of 
(2.11) may be found and then Pi/a z -0.85. Consequently, we have, recalling (2.10), 
neutrally &able crossflow-vortex-type solutions of (2.8) if x 9 1, a = O(1) and 

Pilax x -0.85. (2.12) 

On figure 4(c) we indicate, for each crossflow parameter considered, those points for 
which (2.12) is satisfied. We can conclude that the asymptotic result (2.12) is very 
accurate for surprisingly modest values of x. Once conditions (2.11) and (2.12) are 
satisfied, the Rayleigh equation (2.10b) has regular singular points a t  Y = 0 and 
Y = F and the solution of this equation with boundary conditions (2.8b) forms an 
eigenvalue problem for the Gregory et al. (1955) wavenumber 6. We recall that earlier 
we observed that for x > x, the vortex mode can only persist for wavenumbers a less 
than a,@) and greater than a2(X) and that as I+ co, a, tends to a non-zero constant 
aim. It is now easy to see that a,, is the Gregory et al. wavenumber 8. We have chosen 
not to compute the precise value o f 6  here for its value is dependent on the choice of 
the basic boundary-layer flow and our present purpose is to concentrate on the 
underlying description of vortices in three-dimensional flows as opposed to 
concentrating on profiles (2.9) in particular. However, from figure 3, we can deduce 
that for the basic flow (2.9), 8 x 1.3. 

Thus within the context of inviscid stability theory we now see the relationship 
between Gortler and crossflow vortices. For a two-dimensional boundary layer which 
is centrifugally unstable the growth rate of the most dangerous mode is given by 
(2.5c), the exact solution found by DHS. When the crossflow is increased from zero 
a maximum value of the growth rate develops a t  some wavenumber and the growth 
rate curve to the right of this point eventually crosses the zero-growth-rate axis. 
Thus a t  a finite value of the crossflow a finite band of unstable wavenumbers persists 
to the right of a = 0. At this stage we can identify this unstable band of modes as 
crossflow vortices since at even larger crossflows they reduce to the modes of Gregory 
et al. At larger values of the wavenumber an unstable band of modes persists up to 
a = co for all values of the crossflow; it is perhaps appropriate to think of these 
modes as the remnants of the Gortler mechanism. However, we shall see below that 
a t  high wavenumbers viscous effects become important and that when these effects 
are allowed for these remnants vanish completely a t  large enough crossflows. 
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FIGURE 5. (a) Real parts and ( b )  imzginary parts of the amplification parameter B aa functions 
of crossflow A for vortex wavenumbers a = 5,lO. 

Having examined the asymptotic description of modes for which x > 1, a = O(1) 
we next consider vortex states at high wavenumbers a. In figure 5 we show the 
dependence of the eigenvalue /3 of ( 2 . 8 ~ )  for a range of crossflows in the cases a = 5 
and a = 10. We observe, as already commented upon, that increasing x tends to 
decrease the growth rate Pr and we expect that for each fixed a B 1 there exists a 
corresponding crossflow value at which the vortex is completely stabilized by the 
crossflow. This deduction is consistent with the results previously illustrated in figure 
2 where, as the crossflow increases, the wavenumber range over which vortices are 
unable to persist steadily widens. We can also conclude from earlier results that for 
a % 1 and x not large the vortex flow will remain unstable for as a + 00 ,Jr - at when 
A = 0 and it is not expected that an O( 1) increase in the scaled crossflow h could result 
in a reduction in the growth rate by this dramatic amount. Consequently, we 
anticipate that near-neutral vortices will be described for a B 1, x S 1. 

When a 9 1, following DHS it is deduced from (2.8) that the vortices will be 
confined to a thin region of thickness O(a-l)  adjacent to the cylinder wall y = 0. We 
therefore find it convenient to write 

[ = aY, ( 2 . 1 3 ~ )  

and suppose that around y = 0 the basic flow velocities have regular Taylor 
expansions of the forms 

a = = , ~ ~ ~ a - ' [ + $ , , a - ~ t ~ +  ... . (2.13b) 

When x is gradually increased we find that the stability charactqri5tics of the 
vortices are first altered significantly once x - O(a4). If we write x = a h ,  h = O( 1) we 
are led to the expansion 

P =  i(ai/30+ai/31+...), (2.13 c) 

with Po and P1 real. If in turn we expand V, = V,, + u-'V,, + . . . and substitute into 
( 2 . 8 ~ )  we obtain at the leading two orders the relationships 

- 

POP11 + AP21 = 0, 
and 

( 2 . 1 4 ~ )  
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which needs to be solved subject to V,, = 0 a t  ,$ = 0 and as c+ co (recall that we 
scaled x = 1) .  This problem needs a fully numerical solution but here we merely 
remark that this equation has a critical-layer structure a t  the position 

E = -  2PI Pll ( 2 . 1 4 ~ )  

and that this structure has to be fully analysed in order that the numerical scheme 
be effected. We are presently considering this problem in further work and hope to 
be able to report on this in the near future. However, the structure outlined above 
is certainly consistent with our numerical calculations which suggest the emergence 
of a critical-layer structure when a approaches the cut-off wavenumber a,. 

For the present purposes, we can infer that Gortler vortex states require, a t  
wavenumbers a % 1, a crossflow of size O(al) in order to have a significant effect on 
their stability. Further, in this case the whole vortex structure is compressed into a 
thin O(a-l) region close to the cylinder surface. Of course, in the development of the 
inviscid equations (2.7) which describe the vortex, we found that for O( 1) 
wavenumber vortices in a crossflow of size O(Gi) (see (2.6b)) the viscous terms are 
negligible. However, as u+ 00 the extent of the structure reduces so that at some 
stage we expect that the viscous terms become significant and no longer negligible. 
Guided by the asymptotic results (2.13) and (2.14), study of the fundamental 
equations (2.3) suggest that  viscous terms are crucial and so a new regime is achieved 
when 

a = O(GB), ( 2 . 1 5 ~ )  

and then h = O(Gk) and P = O(GA). (2.15b, c)  

Recalling the original scalings (2.4), (2.6) we then have a viscous structure in 
operation for O(G2)-wavenumber vortices in crossflows of size O(G)) and then the 
vortices develop on a streamwise lengthscale of O(G-6). Interestingly, DHS identified 
the unique most unstable vortex within a two-dimensional base flow as occurring 
within this wavenumber band and developing on this lengthscale. 

In  this section we have restricted ourselves to  calculations pertinent to stationary 
vortices. Much of the above analysis can be modified in a straightforward manner to 
account for time dependence of the vortices. However, our objective has been to 
concentrate on understanding the fundamental connections between the inviscid 
vortex modes and the Gregory et al. crossflow instability and viscous, high- 
wavenumber vortex structures. There are natural non-stationary counterparts of the 
Gregory et al. stationary instability (see Bassom & Gajjar 1988 for an example) and 
these will match with time-dependent inviscid vortices in a manner virtually 
identical to that described here. Further remarks relating our inviscid modes to the 
crossflow instability mechanism will be made in the conclusions. However, we now 
move on to examine the salient properties of the high-wavenumber viscous 
structures suggested by scalings (2.15). 

P o  ru t2  + hP22 ’ 

- 

3. The viscous modes 
Following the discussion of the solution properties of the principally inviscid 

modes considered in the previous section we now examine the effect of crossflow on 
the stability of the viscous modes whose scalings are suggested by the asymptotic 
results (2.15). The wavenumber of these vortices is predicted to  be O(Gi), i.e. is that 
found by DHS for the most unstable vortex in two-dimensional flow. For no 
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crossflow, DHS showed that the vortex is then confined to an O(G-:) thick region 
which lies immediately adjacent to the cylinder y = 0 and that the spatial growth 
rate of the instability is O(Gt) in the streamwise direction. We have, from (2.15b), 
that when the scaled crossflow A* = O(Gt) (where A* is defined in ( 2 . 2 ~ ) )  it is to be 
expected that there will be a significant deviation in the stability characteristics of 
the flow from those which occur in the zero-crossflow case. Then, following DHS, we 
write 

a = k,Gi, (3 .1~)  
where k, is O( 1) and seek disturbances confined to the layer in which $ = O( 1) where 

$ = k, GiY. (3.1 b) 

Then we consider modes for which the perturbation velocities (U,  V ,  W) and pressure 
P take the forms 

(U,  V ,  W ,  P )  = (U, + GdU, + . . . , GgV, + GkV, + . . . , Gi W, + GfK + . . . , GSP, + GgPl + . . .) 
x exp [ Gg (po(X)  + G-ibl(X) + . . . ) dX + iGi (Q,(t) + G-k?,(t) + . . . ) dt (3.2 a) s 1 

and we fix the crossflow parameter a t  O(Gi) so that 

A* = iG%. (3.2b) 
Here the unknowns U,, U,, V,, ..., Po, Pl, . . . are functions of $ alone. 

We substitute (3.1) and (3.2) into (2.3) and compare like powers of the large 
parameter G. I n  this process, we need to expand the basic flow about Y = 0 and so, 
as in (2.13), we assume that 

E = ~ i l ( X )  Y+$12(X) Y"+&13(X) P+ ..., 
tz = pzl(X) Y+&22(x)  p + & 2 3 ( X )  P+ ..., 

v=O(Y") for Y <  1. 

Po U,+ik, W, = 0, 
Po Ul + p1 U,, + k, dV,/d$ + ik, W, = 0, 

From leading orders in ( 2 . 3 ~ )  we have 

and similar manipulation for (2.3b) yields 

PoPll/ko+i~P21 = 0, 

(3 .3~)  
(3.3b) 
(3.3c) 

( 3 . 4 ~ )  
(3.4b) 

( 3 . 5 ~ )  

(3.5b) 

On considering the spanwise momentum equation (2.3d), at leading orders we just 
retrieve a trivial combination of (3.4a), ( 3 .5~)  and (3.5b). The third-order terms 
imply that 
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Eliminating Ul and Wl between (3.4b), ( 3 . 5 ~ )  and (3.6) yields an equation for the 
leading pressure term Po of the form 

Finally, leading-order terms in the remaining momentum equation ( 2 . 3 ~ )  give that 

(3.7b) 
so that on eliminating Po between (3.7a, b)  and simplifying we obtain 

i i  XP11 $ + 3 (P11 P 2 2  -P21 Pl2) v, = -3 uo. (3.8) 
k,Pu,l k, 

It is of interest here to  note that if we had chosen the crossflow to have been of the 
more obviously significant size O(Gg) then the quadratic terms in $ in the above 
equations would be replaced by linear ones. Then p1 can be redefined to remove these 
terms so that such a weak crossflow does not have a significant effect on the viscous 
modes. To summarize thus far, the leading-order vortex quantities U,,, V, satisfy the 
sixth-order system (3.5b), (3.8). To simplify this pair we introduce the parameters E,  
B, 0 and 7 defined by 

k, = (x&)$E, p1 = x$&B, U, = pll U ,  V, = x$& V .  ( 3.9 a 4  ) 

Further, if we write 

and substitute (3.9) in (3.5b) and (3.8), we obtain our final equations to  determine 0 
and V ,  i.e. 

(3.10b) 

We need to impose suitable boundary conditions on the solutions of (3.10). First, 
in order to  ensure that the disturbance is confined to  the thin O(G-4) zone close to the 
wall we demand that the perturbation quantities decay exponentially as $ + 00. 

Additionally, satisfying the requirement of zero disturbance velocities on the wall 
$ = 0, U = V = 0 on $ = 0 and the continuity equation (3.4b) further implies that 
dV/d$ = 0 on $ = 0. Hence, in all, our six boundary conditions are 

- -  

U=F'=dV/d$=O a t  $ = O ,  

O = v = d v / d $ + O  as $+GO. 

(3.11a) 

(3.11 b) 
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Now (3.10) and (3.11) constitute an eigenproblem to be solved for the scaled vortex 
frequency a, scaled spatial growth rate @ and scaled crossflow A. We note that once 
the eigenfunctions 0, P are determined we can retrieve the spapwise velocity 
component of the vortex by applying ( 3 . 4 ~ )  and (3.9). 

The equations solved by DHS are precisely (3.10) with a = x = 0. They 
demonstrated that for all Ewe then have p > 0 so that the corresponding vortex flow 
is unstable. Further, as k+O, @ - $ and as E+ co, p- k?. The behaviour as k+O 
matches with ( 2 . 5 ~ )  which determines the growth rate of O( 1)-wavenumber vortices 
in two-dimensional flow. Since @ + O  as both k+O and as k+ 00 there is a most 
unstable vortex at some intermediate value of k which DHS calculated to be k = 
0.476 with corresponding @ = 0.312. The dependence of @ upon k as found by DHS 
is illustrated in figure 6. Our interest is with non-zero and X, but before we consider 
any specific calculations we make one observation concerning (3.10). We see that if 
(a,a,x) is an eigenvalue set of (3.10) and (3.11) then so is (-a*,p, - A )  for real 
crossflows X, where an asterisk denotes complex conjugate. Evidently we can 
therefore restrict our attention to positive crossflow parameters and do so for the 
remainder of the paper. As a first detailed examination of (3.10), (3.11) we will study 
the effect of introducing the crossflow h whilst maintaining a zero frequency - this 
case is treated in the forthcoming section. 

I 

4. Solution of (3.10) for the zero-frequency case 
We first consider the solution of governing equations (3.10) with associated 

boundary conditions (3.11) for the steady vortex problem (a = 0). Naturally, this 
problem had to be tackled numerically and the solution technique used in practice 
was based on a method suggested by Malik, Chuang & Hussaini (1982). In the zero- 
frequency work described in this section we solved 

(4.1 a )  

(4.1 b )  

by prescribing values for the real scaled wavenumber E and the crossflow A. Then 
(4.1) with its associated boundary conditions (3.1 1) were solved for the complex- 
valued spatial growth rate @. Recalling the definitions (3.2a), (3.9b) we can see that 



662 A .  P .  Bassom and P .  Hall 

0.30 

0.25 

0.20 

0.15 

Pf 0.10 

0.05 

0 

-0.05 

0 
-0.1 
-0.2 
-0.3 
- 0.4 

. -0.5 
-0.6 
-0.7 
-0.8 
-0.9 
- 1.0 

\ \ 
-0.10 ’ -1.1 I 

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 
A x - 

FIQURE 7. (a )  Real part and ( b )  imaginary part of B as a function of crossflow parameter h for 
vortices of zero frequency and wavenumber k = 4. 

when Re (p) > 0 the vortex is unstable and, conversely, for Re (6) < 0 the disturbance 
is stable. As remarked already we can, without loss of generality, restrict ourselves 
to considering x > 0. (Here, and in the remainder of the paper, Re (@) and Im (@) 
respectively denote the real and imaginary parts of the complex number @.) 

Malik et al. (1982) described a boundary-layer method for solving eigenvalue 
problems. In such methods the differential equations to be solved are reduced to a 
set of linear algebraic equations using either a finite-difference discretization or a 
spectral representation and the eigenvalues are found by solving the characteristic 
determinant of a generalized eigenvalue problem. The particular method devised by 
Malik et al. uses a fourth-order-accurate (Euler-Maclaurin) finite-difference scheme 
with nodal points distributed so as to resolve any singular layers. These authors used 
their scheme to examine the temporal and spatial stability of a three-dimensional 
compressible boundary-layer flow over a swept wing. For further details of this 
numerical method the reader is referred to Malik et al. (1982). 

To implement the solution procedure for (4.1) we decided to perform a sequence of 
runs with a gradually increasing crossflow x and a fixed wavenumber E = a. This 
choice of k is not significant, and we duly performed further tests a t  other values of 
&in order to ensure that the results were qualitively similar to those we describe here. 
For zero crossflow we were, of course, just repeating the calculation of DHS 
presented in figure 6 for which p i s  real and the vortex is unstable for all k > 0. For 
non-zero crossflows the spatial-dependence parameter p becomes truly complex and 
some solutions of (4.1) are shown in figure 7 .  Here we have fixed k = + and we observe 
that as increases Re@) decreases so that the vortex becomes progressively 
stabilized. When x = 0, p = 0.313 (from DHS) and Re (6) vanishes when x x 0.406, 
at which point Im (p) x -0.91 (see figure 7 6 ) .  As the crossflow increases yet further 
Re (p) becomes negative and hence we have the situation of a stable vortex flow. The 
form of behaviour of p when E = a is typical of that for other wavenumbers and so 
we may conclude, a t  least for these stationary vortices, that the effect of increasing 
the crossflow is to stabilize the flow. 

We then extended our computations by fixing the crossflow parameter x and 
solving (4.1) for a selection of wavenumbers E. The results obtained are illustrated in 
representative figure 8 (a,  b) .  Here we plot the dependence of Re @) upon k. In figure 
8(a )  we have fixed h at  0.414, i.e. a little larger than the value a t  which the vortex 
of wavenumber k = 0.5 becomes neutrally stable. It is clearly seen that although 
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FIGURE 8. Real part of B as a function of vortex wavenumber k for zero-frequency vortices in 

the presence of crossflows of sizes: (a) x = 0.414; ( b )  A = 0.434. 

Re@) < 0 for k = 0.5, there is a range of wavenumbers, approximately 0.37 < k < 
0.44, over which Re (p) is still positive. Consequently, a t  this crossflow value there 
remains an interval of wavelengths for which the stationary vortex is unstable. 
However, from figure 8(b) it is plain that when x is increased further (here x = 
0.434) we have Re (p) < 0 for all wavenumbers and hence when the crossflow 
becomes this large the flow is completely stabilized. More detailed calculations 
showed that this occurs whenever the crossflow is greater than approximately 0.416. 

There are two natural asymptotic regimes to investigate within the context of the 
present problem. The first deals with the large-wavenumber limit E +  00. We will 
address this limit in $5 because it also arises in the large-wavenumber studies of the 
temporal problem dealt with there. Second is the case of small scaled wavenumber 
k+O. We can develop a formal asymptotic solution of (4.1), (3.11) in this limit but 
rather than concentrate on small wavenumbers for stationary vortices alone we shall 
consider a slightly wider class of flows and shall investigate small-wavelength 
vortices with small frequencies. Of course we can recover the asymptotic solution for 
stationary vortices without formal difficulty but also, much more importantly, 
considering small-wavenumber vortices of the type just described will allow us to tie 
this analysis in with results for the temporal case in $5. 

4.1. Xolutions of (3.10) for 4 1 
Guided by the eigensolutions of the problem (4.1) for small k it is found that for 
k < 1, fi = O ( @  the solution vortex of (3.10) is neutrally stable for a scaled crossflow 
of size O ( @ .  To demonstrate this we suppose that 

Here we have assumed that B is purely imaginary so that D is real and with the 
scalings as in (4.2) the solution structure divides into a number of distinct regions. 

B = BB+ ...) x = cB+ ..., p =  iD@+ ... . (4.2) 

Close to  y? = 0 we write 

$=Re,  V =  v,+ ..., U=E-:U,+ .... (4-3) 
Substitution of (4.2) and (4.3) into governing equations (3.10) shows that 

(4.4a) 

(4.4b) 
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We expect the disturbance to be largely confined within this O($) layer and so we 
demand that as B+co the solution decays. Inspection of (4.4) then imposes the 
conditions 

1 1 
&a-+ ..., U o a - +  ... as O + c o .  e e 3  

Additionally, boundary conditions (3.11 a) demand that 

a t  e =o.  

(4.5a) 

(4.5b) 

Now (4.4), (4.5) together form an eigenvalue problem for the O(1) real constants C 
and D. Before considering this further, we need to check that the disturbance decays 
correctly so as to ensure that the boundary conditions (3.11 b) applicable as $+ 00 

are indeed met. 
Inspection of (3.10) subject to the scalings (4.2) suggests that when f3 = 0(1) the 

velocity components of the vortex behave according to 

0 = IFB+ ..., v = GP+ ..., (4.6) 

using (4.3) and (4.5a). Substitution of (4.6) into (3.10a) yields the equations 

- 4 , - l ) P + 2 P = O ,  - iCkZO= P. (4.7a, b )  

To match with (4.5a) requires pa l/$ as $ + O  and the solution of ( 4 . 7 ~ )  with this 
property is 

where E is some constant and K,($)  is the modified Bessel function of order v, see 
Abramowitz & Stegun (1964). Solution (4.8) has the required exponential decay as 
$+ 03 and so, therefore, 0 also decays exponentially (see (4.7b)). Hence we have 
obtained the complete asymptotic description of the solutions of (3.10) and (3.11) for 
neutral modes when E 4 1, d = fi@, d > d,, where 8, is some O(1) critical value. 
The existence of 6, (whose precise value is not considered here) may be demonstrated 
by showing that as d + - co a completely different asymptotic structure must come 
into play. 

Technically, to complete our description of this limit the solution of (4.4), (4.5) is 
desired for various values of d. We have not done this here for this aspect is not 
within our principal objectives. The asymptotic work above demonstrates that  for 
6 < 1 only a small scaled crossflow, O(&, is required to completely stabilize a vortex 
of positive frequency O ( @ ) .  This is an exceptionally tiny frequency and so in practice 
the scaled frequency parameter SZ defined in (4.2) is likeh to be large. It can be shown 
(and details are available from the authors) that for Q % 1 we have C = O(d$ and 
D = O(&) and this information matches with further asymptotic limits to be 
discussed in the following section. 

The above describes the asymptotic solution of (3.10) and (3.11) for E <  1 and 
0 > bc ,??. We can show that for 0 negative a completely different structure probably 
takes over, and in order to illustrate this revised case we will work with stationary 
vortices (0 = 0) although our analysis may be easily modified to  account for 

< 1, a < 0. I n  the stationary case we need to  solve (4.1) for E < 1. We write 

P = E$iK;( $), (4.8) 

p =  i B j +  ..., x = iiG+ ..., P =  G +  ..., O= B U ~ +  ..., (4.9) 
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in the region where @ = O(1). Substituting these expansions in (4.1) yields 

-i($$+i$2)(d2/d$2-l) V0+2iiq = -$oo, ( 4 . 1 0 ~ )  

- i (B++i+z)  o0 = G, (4.10 b )  

so that (B@+i~2)z(d2&/d$2-q)-2i(B$+/i@2) = $&, (4 .10~)  

which is an eigenproblem for the quantities /3 and h when we impose the inviscid 
conditjon + 0 as @ + 0 and demand that & --f 0 as @ + 00. For neutral modes we 
need fi real and from the numerical work illustrated in figures 7 and 8 we saw that 
for positiye crossflows X in (4.1) the neutrally stable vortices satisfying (4.1) typically 
bad Im (B) < 0. Consequent!y, in %rms of (4.9) we anticipate that the eigenvalues p, 
h of (4 .10~)  are suck that B < 0, h > 0 and so (4 .10~)  has a critical-layer structure 
surrounding @ = -P/h. Of course, the critical-layer problem (4 .10~)  is closely related 
to (2.14b) (in fact i t  is just a scaled version of (2.14b)) which governs the large- 
wavenumber inviscid modes studied in $2. As discussed there, in order that a 
numerical solution of (4 .10~)  be possible a detailed analysis of the critical-layer 
structure is required, which we will consider in a future article. However, the 
pertinent result from this critical-layer problem is that it conceivably represents the 
description of how the neutrally stable vortex modes are affected as we pass from the 
parameter regime of $2 to those considered in this section. 

Although the above description is specific to stationary vortices i t  is easily 
generalized to account for disturbances of frequencies fi = O ( @ )  and negative. The 
effect of the non-zero frequency is to introduce two extra constants into the 
critical-layer equation (4.10 c) but the overall properties of the problem are virtually 
unaffected. Again, inclusion of these non-zero frequencies provides scope for further 
discussion of the critical-layer problem. 

To summarize thus far, we have shown that for small frequencies the effect of 
increasing crossflow in the fundamental equations (3.10) with boundary conditions 
(3.1 1)  is to tend to stabilize the vortex flow. Interestingly, we have also demonstrated 
that for small non-dimensional wavenumbers the structure of the neutrally stable 
modes is dependent largely on the sign of the frequency of the modes. For frequencies 
fi = f%, SZ > d,the vortex structure is dictated by the solution of eigenproblem 
(4.4) whereas as 52 + - 00 we obtain a critical-layer structure which matches with the 
large-wavenumber inviscid modes described by (2.14). Having studied the low- 
frequency problem we now move on to consider larger frequencies; indeed we 
examine the case for which the scaled frequency a = O(1). 

5. The vortex problem (3.10) for 0(1)  frequencies 
Here we examine the properties of Gortler vortices of wavenumber O(Gt) and 

frequency O(G2) in the - -  presence of crossflow of size O(Gi). In this case, of course, the 
scaled parameters SZ, fi and h in (3.10) are all order-one quantities. For the purpose 
of this section we will concentrate almost exclusively on neutrally stable states for 
the results of the previous sections have suggested how the stability of the flow will 
be altered by changing particular parameter values which give rise to neutral modes. 
To solve for neutral modes we again use the method described in $4 subject to a few 
slight changes. We then specify the O( 1) frequency a and the wavenumber E in (3.10) 
and treat these coupled ordinary differential equations as an eigenproblem for the 
crossflow parameter h and the spatial development quantity p which was supposed 
to be purely imaginary. In this way we ensure that the resulting eigenvalues 
correspond to neutrally stable modes. 
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FIGURE 9. Values of crossflow x and parameter needed in order to ensure that vortices of 
frequency a = 1 are neutrally stable: (a)  x and (b )  pi as functions of vortex wavenumber k. 
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Some sample results are illustrated in figures 9-11 where we show the dependence 
of the crossflow X and the parameter p on the scaled wavenumber E for the three 
frequencies a = 1, 0 and - 1.  Briefly, we can see that neutral modes appear to be 
possible over the complete range of wavenumbers E and that for large & the crossflow 
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needed to produce neutrally stable modes is quite small. However, a striking 
difference between the neutral modes is observed depending on whether fi > 0 or 
a < 0. In the former case (see figure 9), as E + O ,  x tends to an O(1) value whereas in 
the latter case h+O as k + O  (figures lOa, l l a ) .  A discussion of the asymptotic 
properties of these two cases is given later. We note here that on recalling the results 
of $4 together with the zero-crossflow calculation of DHS we can infer that for 
crossflows greater than the neutral mode values on figures 9(a)-l l(a) the 
corresponding vortex motions are stable whilst the opposite is true for lesser 
crossflows. 

We can be confident that the results shown in figures 9-11 are sufficient to 
demonstrate that increasing crossflow again stabilizes these non-stationary vortex 
modes in a similar way as was described for the stationary case in $4. As before, there 
exist several regimes in which asymptotic description of (3.10) and (3.11) is possible. 
We first concentrate on properties of this eigenproblem in the high-wavenumber 
limit, E %  1. 

5.1. The high-wavenumber ( E  % 1 )  limit 
In this limit we are concerned with obtaining an asymptotic solution of the system 
(3.10), (3.11) for 5 %  1, 0 = O(1). We can initially consider the problem in the 
context of neutrally stable modes in the spirit of the calculations just described. It 
has been seen that for low-wavenumber modes the vortex structure appears to be 
critically dependent on the sign of the frequency fi but inspection of figures 9-11 
suggests that this is unlikely to be the case for high-wavenumber modes and 
consequently there is no need to specify fi further than taking it to be of order unity. 
An idea of the expected structure can be gleaned by studying figure 12. Here we 
present the eigenfunctions of (3.10) and (3.11) when this pair of equations is solved 
for neutral modes with fi = 0 and 5 x 1.35. Unfortunately, for values of k much 
larger than this value we found that it was difficult to obtain satisfactory numerical 
convergence but the evidence of figure 12 and close inspection of the governing 
equations are sufficient in order to strongly suggest that the disturbance is confined 
to an O( 1)  thick region which moves away from $ = 0 as E+ 00. If we write 

$ = c#E5++, (5.1 a )  

and 

p = i(po P + p1 E-' + . . . ), 
x= A,E--2+AlE-7+ ..., 

( 5 . l b )  

( 5 . 1 ~ )  

together with the eigenfunction expansions 

u= U,+E--"U,+ ...) v =  E'Zv,+E--"K+ ..., ( 5 . 1 d )  

and substitute (5.1) into (3.10) we find the following. A t  leading orders we obtain 

P o  = -Aoc, 
and, at  next order, 

[d2/d@ - 1 + ip0 6 - i(pl c + A, c')] [d'/d@ - 11 V, = - cUo, ( 5 . 3 4  

(5 .3b)  [d2/d+' - 1 + ipo + - i(p1 c +A,  c')] U, = V,. 

By redefining $ = 6 - ((PI c + A, c')/p,) we simplify these equations to 

22 

[d2/d$' - 1 + ipo $1 [d2/d@ - 13 V, = -cUo, (5 .44 

(5.4b) [d2/d@ - 1 + iF0 $1 U, = V,, 
FLM 232 
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which need to be solved for real Po and c subject to the boundary conditions 

U,, V,, dV,/d$-+O as $++a. (5.5) 

The precise solutions of (5.4) and (5.5) are relatively unimportant - the crucial 
conclusion we can draw from this asymptotic work is that for an O(1) frequency we 
only need a very small O ( P )  crossflow to stabilize modes with wavenumber E 9 1. 
In  passing, we notice that the eigenproblem (5.4) may be used to deduce other 
results. In  particular, we have the result that the description of the asymptotic 
problem E+co is independent of the order-one value of 8: a result which is in 
keeping with the numerical evidence presented earlier. Indeed, the above is valid for 
all frequencies 8 = o(E2) so that in particular it is valid for the high-wavenumber 
limit of the zero-frequency work examined in $4. 

We now make some comments about the low-wavenumber limit, E + O .  

5.2.  The low wavenumber ( E  << 1) limit for fi > 0 

We have already observed that different eigenproperties of (3.10), (3.11) are expected 
for f i <  1 and that the sign of 0 is crucial in determining these properties. 
Consequently, here we take a > 0 and examine the case fi < 0 later (the zero- 
frequency case has already been dealt with). When s > 0, E << 1 the eigenfunctions 
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of (3.10) are concentrated in a thin region near $ = 0, see figure 13 where we 
illustrate the eigenfunctions U,  v for the case fi = 1, E =  1.3 x This suggests 
seeking a multi-zoned asymptotic solution structure of (3.10) for E 6 1, fi = O(l ) ,  
and we now show how this may be achieved. Initially, we suppose that the crossflow 
h and spatial dependence 

x = A,+A,&:+A2@+ ..., ( 5 . 6 ~ )  

p = i[Po Ei + /I, i Z  + p2 E+ . . .I, (5.6b) 

and we recall that we are seeking neutral disturbances so that the O( I)  constants A,, 
A,, . . ., A, PI, . . . are real. After experimentation, we can infer that the disturbance is 
largely trapped in an O(@)  thick region which is located at  a distance O(&i) from 
$ = 0. Guided by this, when 

assume the forms 

$ = E+,+G&, (5.7a) 

say, with $, = 0(1), we need to expand 

u= u,E--t+u,E-'-t+u2+ ..., v =  V,+V,&i+ V,G+ ... . (5.7 b )  

Substituting (5.6), (5.7) in (3.10) yields that in this region (refer to it as zone I), 

fi+p,$,+A,$: = 0, ( 5 . 8 ~ )  

P o + 2 $ 0 ~ 0  = P l $ o + A l $ :  = o .  (5.8b, c) 

If we define d = pz $, + A,  - ( f l /4A0)  and write 

J = P,/2A, + $, 

[d2/d$2 -id- iA, @] d2V,/dyb + 2iA, V, = - $o U,, 

we deduce that within zone I the leading-order disturbance quantities U,, V, satisfy 

(5.94 

[d2/d$2 - i d  - iA, U, = V,. (5.9b) 

For the Pisturbance to be effectively confined to zone I we require the solutions to 
dec9y as $-++ a. We can show that the potentially most dangerous mode is even 
in $, and in addition it is easy to prove that 

& = I / & ,  uoai /A,@ as &+a. (5.10) 

In the course of his investigation into Gortler vortices at O(Gf) wavenumbers in 
three-dimensional boundary layers, Hall (1985) considered the eigenproblem (5.9), 
(5.10). He found that the relevant eigenvalues are 

$,/he = 4.71 and d/Ab = -3.59. (5.11 a, b)  

Even though we now have enough information to determine A, and /3, via (5.8a, b)  
and (5.11a), we must check that this zone I solution obtained above can be 
satisfactorily matched to the requisite boundary conditions (3.11). Since zone I is 
fixed at a distance O ( B )  from the wall $ = 0 it is natural to define a second region, 
zone 11, by 

+ = &ie. (5.12) 

By (5.7b) and (5.10), within zone I1 the eigenfunctions must expand according to 

v =  V , G +  ...) i7= uoEf+ ... . (5.13) 

22-2 
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FIQURE 13. Eigenfunctions u, P of (3.10) and (3.11) for neutrally stable vortices with 
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Substitution of (5.6), (5.12) and (5.13) into the governing equations (3.10) yields, on 
application of the results (5 .8) ,  that 

(0 - $o)2 d2v0/de2 - 2w0 = 0, (5 .14~)  

and ih,(B-$o)2u, = -vo. (5.14b) 

Strictly, of course, we need to consider the regions 0 < $o and 0 > separately, and 
we shall concentrate on the former first. 

5.2.1. The region 0 < $o 

We recall that the boundary conditions (3 .11~)  need to be satisfied a t  0 = 0 and, 
guided by result (&lo), we solve (5 .14~)  subject to the conditions wo+ ( l /0 )+  ... as 
O+ $o, v0 = 0 at 0 = 0. This yields 

and, by (5.14b), 

(5 .15~)  

(5.15b) 
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We see that (5.15) satisfies only two of uo = vo = dvo/dB = 0 at B = 0 and to force the 
third condition to be met we now add a viscous layer, zone 111, at 8 = 0. If in this 
layer we define the 0(1) coordinate 

$ = E5, (5.16) 

and the expansions u = d o G +  ...) v = d o G +  ...) (5.17) 

then to satisfy (3.11a) and to match with (5.15) we require 
$ 5  
uo = vo = ddo/d5 = 0 at 5 = 0 

and 3i A 35 

mG $: 
u0+-5+ ..., so+-+ ... as [+a. 

Substituting (5.16), (5.17) into (3.10) yields 

(d2/d52-ia)d280/d52 = 0, (d2/dt2-ifi)do = 8,. 

( 5 . 1 8 ~ )  

(5.18 b )  

(5.19) 

The solutions of (5.19) satisfying (5.18) are 

and 

where m2 = ia and a is chosen so that do(0) = 0. In this way we have shown that the 
solution proposed so far satisfies the required conditions at $ = 0. We now need to 
reconsider the O ( B )  zone, zone 11, where + = 5% and B > lc/o. Here expansions (5.13) 
and equations (5.14) again apply but this time we need to solve (5.14) so that 
vo + (1/8) + . . . as 0 + $o and vo + 0 as 8 + 00. The required solution is simply 

vo = 1/(0-+0), ( 5 . 2 0 ~ )  

and then u0 = i/A0(B-$0)3. (5.20b) 

To complete the structure we are led to consider a fourth zone, IV, where $ = 0(1) 
and from (5.20) this means that the eigenfunctions have behaviour of the form 

(5.21) 

To match with (5.20) requires Go + (l/$) + . . . and Zi, + (i/Ao @3) + . .. as @-+ 0. 
Substitution into (3.10) finally gives that 

I P =  soG+ ..., D= Zioka+ ... . 

(5.22a, b )  

The solution of ( 5 . 2 2 ~ )  with the required algebraic growth as $ + O  together with 
exponential decay as $+ 00 is 

$0 $Qq$), (5.23) 

where K,(+) is the modified Bessel function of order u. Clearly, Go also has exponential 
decay as @+ co and so we have a complete asymptotic solution of (3.10), (3.11) for 
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FIGURE 14. Schematic diagram of the asymptotic structure of the solution of (3.10) and (3.11) for 
the case of small vortex wavenumber k Il. The solution configuration divides into four distinct 
zones: Zone I is a thin region of depth O(&) at a distance O($] from the wall, see definition (5.7a). 
This zone is embedded within 11, a region of thickness O ( F ) ,  see (5.12). The structure has an 
additional thin viscous layer a t  the wall, zone 111, which enables boundary conditions ( 3 . 1 1 ~ )  to 
be met. Finally, an outer region IV of depth O(1) facilitates the exponential decay of the 
disturbance solutions far from the wall, see (5.21). 

= O ( l ) ,  f 4 1 and B imaginary. The full four-zoned structure of this solution is 

A, z 0.460:, $, z 1.47@, Po z - 1.360:. (5.24) 

Hence we conclude that for small-wavenumber vortices, a crossflow of approximately 
0.46&+ ... is required to  stabilize the flow. We note also that as a+O in (5.24) our 
predictions match with the solution of the f < 1 ,  a = O ( @ )  problem described in 
$4.1. Having obtained the solution structure for k 4 1, a > 0 we turn now to 
consider the second case, 0 < 0. 

summarized in figure 14. Returning to (5.8a, b )  and (5.11) yields that 

5.3. The low-wavenumber (f 4 1 )  limit for a < 0 

Having deduced the difference in behaviour of solution properties of (3. lo), (3.11) 
when f 4 1 depending on the sign of a we now study the case 0 < 0. From figure 10 
we conclude that the most fundamental difference between the two cases is that for 
0 < 0 both p and x tend to zero as f+  0 in order that neutrally stable modes may 
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FIGURE 15. Eigenfunctions - 0, v of (3.10) and (3.11) for neutrally stable vortices with 
k = 8.7 x D = - 1 : (a) Re (0) ; (b)  Im (0) ; (c) Re ( ; (d ) Im ( v). 

be obtained. In order to study the structure here we show the eigenfunctions of the 
problem (3.10) when 8= -1 and E =  8 . 7 ~  see figure 15. Clearly the 
eigenfunctions are confined to a thin region centred away from the wall $ = 0 and 
suggests that some critical-layer-type structure is operational. This is in agreement 
with the low-frequency work of the previous section where we proved that when 0 
is negative a similar critical-layer approach is required, see (4.10). 

To describe the detailed structure we suppose that across the majority of the flow, 
where $ = 0(1), we write 

v =  K+ ...) I T =  E m o +  ..., ( 5 . 2 5 ~ )  

and suppose that the streamwise-dependence parameter p and scaled crossflow 
take the forms 

Substitution in (3.10) yields that 6 satisfies 

p = i(bo @+ ...I, A = (i, E++ ...I. (5.253) 

(5.26) 

This equation, which is identical to (4.10c), needs to be solved subject to 6 = 0 at 
$7  Oland 6 -to as $+ 00. As before, there is a critical-layer structure a t  $ = 
-bo/Ao which needs further study before a full numerical solution of (5.26) can be 
effected. However, we can draw the general conclusion that for a < 0 the crossflow 
needed to maintain neutrally stable vortices vanishes as E + O .  
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FIGURE 16. The growth rates of some unsteady modes of (3.10) : (a) fi = 1 and ( b )  fi = - 1. 

In addition to the work on neutral modes described here we have performed a few 
calculations for non-neutral modes. In figure 16 we show the effect of crossflow on the 
stability of the vortices. We consider the two frequencies fi = - 1 , 1  and take the 
crossflow parameter = 0.1,0.2,0.3,0.4 and, for various wavenumbers 5, solve 
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(3.10), (3.11) for the complex-valued B. Figure 16 shows the growth rate curves for 
vortices with the above crossflow parameters. We can see (as has already been 
commented upon) that for a fixed-wavelength vortex an increasing crossflow 
progressively stabilizes the flow. Furthermore we see that instability occurs only for 
a finite range of values of the wavenumber; and we note that the width of this 
unstable band decreases as the crossflow increases. We also note that the flow is more 
unstable when the imposed frequency is positive. We now conclude with some further 
observations and some discussion. 

6. Conclusions 
In the previous sections we have described the mechanism by which the Gortler 

vortex instability mechanism is destroyed by the introduction of a weak crossflow 
into a centrifugally unstable basic state. We choose to concentrate on the situation 
when the crossflow is of size O(Red) because that is the crucial size a t  which the 
crossflow first has a significant effect on Gortler vortices. In  addition, we elect to 
concentrate on the large-Gortler-number limit because that limit describes inviscid 
Gortler vortices and non-parallel effects can be accounted for using asymptotic 
means. We found that a t  order-one wavenumbers the introduction of a crossflow 
causes the growth ratewavenumber curve of inviscid theory to split into two 
distinct parts. Thus above a critical size of the crossflow a finite band of unstable 
modes exists to the right of a = 0. This band of modes takes on the asymptotic 
structure of crossflow vortices when the crossflow is increased further. The growth 
rates of these modes increases monotonically with the crossflow parameter and will 
become formally of order Re: when the crossflow is comparable with the streamwise 
basic velocity field. The second branch of unstable modes occurs at progressively 
higher wavenumbers as the crossflow increases. The growth rates of these modes a t  
any fixed value of the crossflow increases like O(ai) for large a so it would appear at 
first sight that, a t  a fixed value of the crossflow, the viscous modes have the highest 
growth rates. However this is not the case since viscous effects, as in DHS, serve to 
stop this monotonic growth of p with a. In  the absence of any crossflow the growth 
rate peaks a t  a wavenumber of O(G$ and has a maximum of order Gg. At higher 
values of a the growth rate tends to zero and the right-hand-branch neutral structure 
of Hall ( 1 9 8 2 ~ )  is retrieved. In the presence of a crossflow we showed that the second, 
semi-infinite band of unstable modes predicted on inviscid grounds becomes reduced 
to a finite band a t  high wavenumbers when the crossflow is formally of order @. At 
this stage the growth rates of the crossflow vortices associated with the modes to the 
right of a = 0 have growth rates of O(Gf), comparable with those of the viscous 
modes. However, as the crossflow is increased further the growth rates of the 
crossflow vortices increase whilst the viscous modes become stabilized. We further 
note that the unstable band of modes which emerge to the right of a2 connect with 
the viscous modes in an inviscid manner ; by this we simply mean that their structure 
is governed by a critical-layer scenario near a2. 

In  figure 17 we have sketched the growth rate-wavenumber dependence 
determined above for the three situations: (a )  A* - Gi, ( b )  A* N &, and (c) A* S Gi. 
In  (a)  the crossflow is strong enough only to alter the inviscid modes which have 
growth rate of O(G;) ; the viscous modes have growth rates of order Gi and are not 
affected by the crossflow. In (b )  both modes have growth rates of order G: but the 
inviscid modes are now independent of the wall curvature at zeroth order ; thus the 
kviscid modes have deformed into crossflow vortices. The viscous modes a t  this 
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FIQURE 17. A sketch of the growth ratewavenumber dependence for the crucial 
crossflow scalings. 

stage depend on the crossflow and become completely stabilized a t  a finite value of 
h*/Gt. However, before this occurs there are two points a t  which the growth rate has 
a local maximum. The relative importance of the maxima associated with the viscous 
and inviscid modes switches over as the crossflow increases. In  (c) only the crossflow 
vortex mode remains and at zeroth order it is independent of the curvature of the 
wall. 

The question of which of the possible modes discussed above is the most likely to 
be observed in an experiment can only be answered by a receptivity calculation of 
the type given by DHS for Gortler vortices in two-dimensional boundary layers. In 
fact the analysis given in $6 of the latter paper is easily modified to discuss the 
receptivity problem for the viscous modes described by (3.10). Since this type of 
disturbance is concentrated near the wall then, following the analysis of DHS, it is 
a relatively simple matter to show that the ‘ coupling ’ coefficient associated with a 
roughness element at the wall is O(1). By this we simply mean that the streamwise 
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velocity component of a mode stimulated by an obstacle at the wall is comparable 
to the fluid velocity induced near the obstacle. However, as in DHS, the coupling 
coefficient depends on the vortex wavenumber and, if all modes are excited, 
sufficiently far downstream of the obstacle the fastest growing linear mode will 
dominate the flow field. We shall concentrate on the case ( b )  above since by taking 
the appropriate limits in that situation ( a )  and (c) can be recovered. 

We suppose then that the obstacle stimulates disturbances on a spanwise 
lengthscale comparable with the boundary-layer lengthscale ; this means that the 
inviscid modes satisfied by ( 2 . 8 ~ )  will be stimulated. We shall now briefly describe 
how the coupling coefficient for this t.ype of mode can be derived. 

Suppose then that the roughness element defined by 

Y = h ( X , Z ) ,  (6.1) 

generates a disturbance field governed by (2.3). We assume that there are no 
oscillations in the free stream so that the disturbed flow will be steady. Following 
DHS it is straightforward to show that the system (2.3) must now be solved subject 
to 

U = - % , h ,  V = O ,  W = - m y x *  at Y = O  (6.2) 

instead of U = V = W = 0 at Y = 0. More precisely we note that we must replace ia 
by a partial 2-derivative in (2.3) unless the X- and 2-dependences of h are separable. 
For simplicity we assume that this is the case so that without loss of generality we 
can take h to be a function of X alone in the following discussion. However, we note 
that, if we wish to generate the flow fields in a neighbourhood of the obstacle, the 
particular 2-dependence of h must be accounted for when inverting the Fourier 
transform (in 2) of the disturbance. Here we are merely interested in finding the 
coupling coefficients associated with stationary vortices of wavelength comparable 
with the boundary-layer lengthscale so i t  is sufficient to take h = h(X) .  

Since the forcing takes place at  the wall we must in effect determine how an 
inviscid disturbance satisfying ( 2 . 8 ~ )  adjusts in a viscous wall layer so as to satisfy 
the correct boundary condition at the wall. It is easy to see that this layer must be 
of thickness O(G-i) so that (6.2) suggests the following expansions for (V ,  V ,  W , P )  in 
the wall layer where Y = Gaq: 

(U ,  V,  W , P )  = (V+ ..., G i P +  ..., GiWO+ ..., G;P+ ...) (l+O(G-f)). (6.3) 

The X-dependence of the disturbance field is now taken care of using a Laplace 
transform. We suppose that h varies on an O(Gi) lengthscale in the X-direction. Thus 
we write 

and determine the flow induced beyond X = X,. Thus we now let p be the Laplace 
transform variable with respect to the variable Gi[X-X,]. After a little work we can 
show that in the wall layer UO and WO are related by 

pV + iaWO = 3m Ai (Niq) dq, r ( 6 . 4 ~ )  

where h is the transform of H and 
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whilst Ai is the Airy function. The function P is then given by 
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P = - 3 6 N l (  s," Ai (A%) d6) dq. (6.46) 

We see that the above solution has P tending to a constant Pa as q +  cn so that in 
the main part of the boundary layer the appropriate expansions of U ,  V and Ware 

(U,V, W) = (G-kJo+ ..., GiV,+ ..., GiW,+ ...)( l+O(G-:)). 

The function Vo is then found to satisfy ( 2 . 8 ~ ) ;  but the appropriate boundary 
conditions for this equation now become 

&=Pm at Y = O ,  V,+O as Y + a .  

For given values of the transform variables p and a this inhomogeneous differential 
system for V, can be solved. However, if p = p an eigenvalue of (2.8a-c) then the 
solution of the forced problem near p must be found by writing 

where V,, = A G .  Here 
may be written as 

is the eigensolution of (2.8a-c) with /3 = p. The constant A 

J ~ ( q )  vo(q) dq 
0 

Here the function M is obtained by differentiating the left-hand side of ( 2 . 8 ~ )  with 
respect to  /3 and then setting V, = 6. Having determined V, we then see that in the 
main part of the boundary layer the disturbed downstream velocity component in 
(p, a)-space near /3 = p is given by 

It follows that when the Fourier-Laplace transform U ( 8 ,  a ,  Y )  is inverted then the 
pole a t  p will lead to  exponentially growing eigensolutions proportional to 

AG-texp [,8G$X-Xo)]. 

Thus the coupling coefficient for inviscid vortex modes is of order G-f so that wall 
roughness is a more efficient stimulator of the viscous modes which, from DHS, have 
an O(1) coefficient. However, as the size of the crossflow is increased the growth rates 
of the inviscid modes increases to be larger than the viscous growth rates so this 
slight difference in size of the coupling coefficients will be irrelevant beyond a critical 
size for the crossflow and the observed instability will be a Rayleigh instability rather 
than a centrifugal one. 

Finally we say a few words about the relevance of the above calculations to 
practical flows. I n  the obvious practical situations where Gortler vortices are thought 
to  be a likely cause of transition the basic state is three-dimensional. Thus for 
example there is little doubt that the flow over a turbine blade is three-dimensional 
and our results suggest that  it could therefore not support Gortler vortices. On a 
swept wing the basic state is three-dimensional and, for order-one values of the angle 
of sweep, we can be confident that Gortler vortices cannot exist. However, thou h 
the size of crossflow required to  formally destroy the mechanism is of O ( R d G s ) ,  

8 
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which is necessarily small because of the definition of the Gortler number, the 
numerical constant multiplying this factor will be a function of the particular basic 
state. It could well be that for some swept-wing flows the Gortler mechanism might 
survive to modest angles of sweep appropriate to practical situations. Clearly this 
matter should be the topic of a careful experimental investigation of the Gortler 
mechanism in three-dimensional flows. 

The authors wish to thank SERC and USAF for support for part of the work 
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